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Version history: V0 → V1:

• Deadline: Feb 20, by 23:59.
• Submission: You need to submit your solutions through Crowdmark, including all your

derivations, plots, and your code. You can produce the file however you like (e.g. LATEX,
Microsoft Word, etc), as long as it is readable. Points will be deducted if we have a hard
time reading your solutions or understanding the structure of your code.

1. Stieltjes Transform and Double descent - 30 pts. In the lecture, as d/n → γ, we
proved that the risk of ridge regression can be written as

Risk(λ) = V(λ) + B(λ),(1.1)

where the variance and the bias terms are given as

V(λ)→σ2γ
{
s(−λ)− λs′(−λ)

}
B(λ)→λ2s′(−λ)

with s(z) =
∫

1
x−zdµ(z) denoting the Stieltjes transform of the M-P law (explicit form given in

lecture). Compute the risk of ridgeless regression as λ → 0+ by deriving expressions for V(0+)
and B(0+). Plot the bias, variance and the risk as a function of γ (No need to submit code).

2. Implicit bias and Double descent- 70 pts. We have n data points {(xi, yi)}, each of
which is a pair of feature vector xi ∈ Rd and corresponding label yi, and our goal is to find some
parameter vector θ ∈ Rd that accurately predicts a linear relation between the features and the
label. We do so by minimizing the squared difference between the predictions of our linear model
and the labels, summed over n data points, i.e., the least squares objective

minθ∈RdR̂(θ) :=
1

2
‖y −Xθ‖2

where y = (yi) ∈ Rn is the response, X = (xi) ∈ Rn×d is the feature matrix, and θ is the least
squares parameter. We assume that the data matrix is not degenerate, i.e., rank(X) = min{n, d}.
This implies that when n > d, then X>X is invertible, and when n < d, XX> is invertible.

Since we have n data points, and we aim to learn d parameters from data, we know that when
n < d, the problem is underdetermined since we have more parameters than data points; we refer
to this setting as the overparameterized regime; conversely, the underparameterized regime refers
to the n > d setting.

We solve this problem with gradient flow

d

dt
θt = −∇R̂(θt), θ0 = 0,(2.1)

where ∇R̂(θ) = X>(Xθ − y).
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1. Underparametrized regime: Assume n > d and set λmin/max = λmin/max(X>X) > 0 so
the problem is strongly convex. Prove that

‖θt − θ̂‖2 ≤ e−µt‖θ̂‖2 with θ̂ = (X>X)−1X>y

where µ = 2λmin. Remark: A similar result also holds for the gradient descent.
2. Overparametrized regime: When n < d, we have that λmin = 0, thus the objective

is no longer strongly convex (still convex). Since in this case, the equation Xθ = y is
underdetermined, there can be infinitely many solutions achieving zero loss: R̂(θ) = 0.
However, as it turns out, GF (starting from 0) has some implicit bias and does not return
an arbitrary zero-loss solution.
Prove that (2.1) at t =∞ returns the min-norm solution

θ̂ = arg min
θ
‖θ‖2 such that Xθ = y.

In other words, in the overparameterized setting, GF finds the zero-loss solution with the
smallest Euclidean norm. This phenomenon is called implicit bias. Hint: GF solution is
always spanned by the rows of X for all t.

3. Conclude that GF finds the following solutions to the least squares objective

θ∞ =

{
(X>X)−1X>y, n > d

X>(XX>)−1y, n < d.
(2.2)

4. (Digression) Prove that the ridge regression solution θ(λ) = (X>X + λId)
−1X>y in the

overparametrized regime converges to the same minimum norm solution in the limit λ→ 0+.
This is what we analyzed in the lecture as well as Problem 1 above.

5. The above calculations do not rely on a particular statistical model. In what follows, we will
assume that the data generating process satisfies

yi = 〈xi,θ∗〉+ εi, εi ∼ N (0, σ2).

where εi is independent of xi. If we assume that the features are Gaussian xi ∼ N (0, Id),
show that the population risk R(θ) = E[(y − 〈x,θ〉)2] of any (possibly random) θ̂ is

R(θ̂) = E[‖θ̂ − θ∗‖2] + σ2.

Thus the excess risk is

ER(θ̂) = E[‖θ̂ − θ∗‖2].

6. Using the explicit form of the GF solution (2.2), prove that

ER(θ∞) = E[‖θ∞ − θ∗‖2] =

{
σ2E[Tr

(
(X>X)−1

)
], n > d+ 1

d−n
d ‖θ∗‖

2 + σ2E[Tr
(
(XX>)−1

)
], n < d− 1

Hint: In the case d > n, you will need to compute E[PR] where PR = X>(XX>)−1X
is the projection matrix to the row space of the Gaussian matrix X. Note that Gaussian

2



matrices are rotationally invariant, i.e. X
d
= XQ for any unitary matrix Q ∈ Rd×d. Due to

this property, if we write the EVD of X>X = V DV >, the (diagonal) matrix D containing
the eigenvalues is independent of the matrix V . This in hand, show that the projection
matrix is given as PR = V SV T where S is a d× d diagonal matrix with entries either 0 or
1, with trace n. Argue that S and V are independent, and by symmetry, E[S] = n

dId.

7. Using the properties of the inverse Wishart matrices1, show

ER(θ∞) =

{
σ2 d

n−d−1 , n > d+ 1
d−n
d ‖θ∗‖

2 + σ2 n
d−n−1 , n < d− 1.

8. Compare this non-asymptotic result to the asymptotic result obtained via M-P law. You
may assume θ∗ is a multivariate Gaussian. Do you observe the same asymptotic behavior
as n, d→∞ and d/n→ γ?

1https://en.wikipedia.org/wiki/Inverse-Wishart_distribution
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